
Optimal Filling of Shapes

Carolyn L. Phillips,1,* Joshua A. Anderson,2 Greg Huber,3,4,5 and Sharon C. Glotzer1,2,6,†

1Applied Physics Program, University of Michigan, Ann Arbor, Michigan 48109, USA
2Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA

3Center for Cell Analysis and Modeling, University of Connecticut Health Center, Farmington, Connecticut 06032, USA
4Department of Cell Biology, University of Connecticut Health Center, Farmington, Connecticut 06032, USA

5Department of Mathematics, University of Connecticut, Storrs, Connecticut 06032, USA
6Department of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA

(Received 19 January 2012; published 10 May 2012)

We present filling as a type of spatial subdivision problem similar to covering and packing. Filling

addresses the optimal placement of overlapping objects lying entirely inside an arbitrary shape so as to

cover the most interior volume. In n-dimensional space, if the objects are polydisperse n-balls, we show

that solutions correspond to sets of maximal n-balls. For polygons, we provide a heuristic for finding

solutions of maximal disks. We consider the properties of ideal distributions of N disks as N ! 1. We

note an analogy with energy landscapes.
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Packings of nonoverlapping objects such as monodis-
perse or polydisperse spheres, ellipsoids, or polyhedra
have been long studied by physicists and mathematicians
[1–11]. Coverings of shapes by overlapping objects are
also of interest in many physical settings [12–16]. Packing
and covering are two familiar examples of problems in the
subdivision of space subject to prescribed constraints.
Whereas in the packing problem objects packed in a given
shape are not allowed to overlap each other or the shape
boundary, in the covering problem objects overlap both
each other and the shape boundary in an effort to maxi-
mally cover a given shape. In both problems, the objects
may be monodisperse or polydisperse in size. In covering,
the objects are typically n-balls (disks, in 2D); in packing,
the objects may be of any shape.

In this Letter, we present a new type of spatial subdivision
problem which can be viewed as intermediate between the
packing and covering problems. We define filling as the
problem of packing overlapping objects inside of a defined
shape so as to cover the interior volume without extending
beyond the boundary of the shape (Fig. 1).We are primarily
interested in the optimal filling of an n-dimensional shape,
characterized by a well-defined (n� 1)-dimensional sur-
face, with N polydisperse n-balls. Specifically, we seek the
optimal placement and radii of the n-balls for a given N.

Filling has immediate application to a broad range of
problems. For us, it arose from the problem of modeling
anisotropic nanoparticles as rigid bodies composed of a
sum of isotropic volume-excluding potentials [17]. Other
applications are the problem of irradiating a tumor with the
fewest number of beam shots while controlling the beam
diameter, but without damaging surrounding tissue [18];
using time-delayed sources to create shaped wave fronts;
combining precision-placed explosives with tunable blast
radii; positioning proximity sensors with defined radii; cell

phone and wireless network coverage; or any problem of
ablation or deposition where one has a sharp impenetrable
boundary and a radially tunable tool. In computer graphics,
a filling solution may represent a method for transmitting
and reconstructing a shape from minimal information [19].
It can be related also to the coarsening (due to Ostwald
ripening) of wet foams packed in containers with nonwet-
ting surfaces and, as well, may present a novel way to
construct shaped nanoparticles [20,21].
Here we show that, to optimally fill an n-dimensional

shape with N n-balls of varying radii, only solutions of
maximal n-balls (that is, balls whose centers lie on the
medial axis of the shape) need be considered. It will follow
that the dimension of the solution space is reduced from
nþ 1 to n� 1. Second, we consider optimal fillings of
polygons with N polydisperse overlapping disks. For
this two-dimensional case, we present a heuristic for the
numerical generation of optimal solutions for arbitrary
N. Third, by considering how disks are optimally distrib-
uted in polygons as N ! 1, we derive exact analytical
expressions for the spatial distribution of the disks and
show that the fraction of unfilled area for optimal solutions
vanishes like 1=N2. The analytical expressions may be

FIG. 1 (color online). The problem of filling a shape, such as a
triangle, may be viewed as intermediate between the familiar
packing and covering problems.
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used to approximate solutions for finite but large N. We
derive an exact expression for the fractional allocation of
disks over the three medial axis branches of a triangle as
N ! 1. We discuss how solutions for n ¼ 2 provide in-
sight into the filling problem of generalized shapes in
arbitrary dimensions. We also note an interesting connec-
tion to energy landscapes.

Reducing the dimension of the solution space using
maximal n-balls.—For optimal filling solutions, the objec-
tive function to be maximized is defined to be the volume
of the union of a set of N n-balls constrained to the interior
of a shape G. The upper bound of this function is the total
volume ofG. The optimalN ¼ 1 filling is the largest n-ball
that can fit in G. Given a set of N n-balls, the contribution
of a single ball to the total filling is equal to the volume of
the ball minus the fractional share of the volume of any
overlap with the N � 1 other balls (Supplemental Material
[22], Sec. 1A). To find optimal solutions forG, we find that
it is not necessary to consider the space of all possible
n-balls contained in G. Importantly, we show that only the
maximal n-balls need be considered.

First introduced by Blum [23,24] as a ‘‘topological
skeleton,’’ the medial axis is a reduction of an
n-dimensional shape into an (n� 1)-dimensional space,
MðGÞ, the locus of centers of the maximal n-balls. A
maximal n-ball is an n-ball completely contained in the
shape tangent to the shape boundary at two or more points.
Also, a maximal n-ball is a ball contained completely in G
but not contained in any other ball in G.

The radius function r is a continuous, non-negative
function defined at each point of MðGÞ as the radius of
the maximal n-ball centered at that point. The medial axis
and the radius function comprise a complete shape
descriptor [24] and can be used to reconstruct G. Every
maximal n-ball in G can be represented as a unique point,
its center, on MðGÞ. If each n-ball in a proposed optimal

filling is replaced by a maximal n-ball containing it, the
new solution will fill an equivalent or greater area of G.
Therefore, only solutions of maximal n-balls need be
generated. Finding solutions is reduced to finding center
points on an (n� 1)-dimensional hypersurface.
Heuristic for 2D shapes.—For a planar shape G, MðGÞ

is the one-dimensional planar graph that is the locus of the
centers of the maximal disks (2-balls) of the shape.MðGÞ is
a set of 1-manifolds, or branches, plus connecting branch
points and terminating end points [24]. For a convex
polygon, MðGÞ is composed only of straight segments.
For polygons [25],MðGÞ is composed of straight segments
and, possibly, parabolic curves. Various algorithms exist to
compute the medial axes of convex or concave polygons
[26,27]. The medial axes of a pentagon and a concave
polygon are shown in Fig. 2. The filled area of all the
N ¼ 1 maximal disk fillings is shown from the side in
Fig. 2 for both shapes. The global maximum is synony-
mous with the largest disk inscribable in G. In a convex
shape, there is only one maximum. In a concave shape,
there can be many.
The neighbors of a disk A inMðGÞ are the set of centers

that can be reached along any path in MðGÞ originating at
the center of Awithout traversing another center. In 2D, we
find that the change in the total filling due to locally
displacing a maximal disk center on MðGÞ is a function
of only the change in the overlaps of the maximal disk with
its neighbors (Supplemental Material [22], Sec. 1B). In
Fig. 2, the centers of the neighbors of the largest disk of the
concave polygon are enclosed by dashed boxes.
Traps are a special set of points on the medial axis,

which are important in optimal filling solutions because
they are often occupied by centers. To see this, we consider
the behavior of the objective function around a trap. We
begin by observing that the filling function is piecewise
first-order continuous, with fixed points of first-order dis-
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FIG. 2 (color online). Two polygons and their medial axes (green line segments): (a) pentagon and (b) concave polygon. Below each
is a side view of the landscape of the N ¼ 1 total filled area function (the area of both shapes is normalized to 1). For the pentagon, the
horizontal extents of the shape are shown by dashed lines. For the concave shape, the local filling maxima of the N ¼ 1 solution are
shown by dashed lines. To the right of each shape is an optimal filling with 21 disks. Disk centers in traps are shown as red open dots.
For the concave polygon, dashed squares enclose the centers of neighbors of the largest maximal disk.
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continuity that we refer to as junctions. These are points
where the radius function and/or path in MðGÞ is discon-
tinuous. In 2D all branch points are junctions. If a junction
is a local maximum with respect to moving a single disk
center (all other disk centers held fixed), then the junction
is a trap, because small displacements in the centers of
disks neighboring the discontinuity do not displace the
position of the local maximum. In Fig. 2, the centers caught
in traps in the optimal filling solutions are shown as red
open dots. We observe that disk centers in traps tend to be
common features in optimal filling solutions and even a
fixed feature when N is large.

We now propose a solution strategy whereby disk cen-
ters are distributed onto MðGÞ and the local filling maxi-
mum is found by a gradient method. If the maxima of
enough distribution samplings are generated such that all
the local maxima can be enumerated, then the global filling
maximum is among them. We propose the following heu-
ristic that accomplishes this efficiently while also greedily
using theN � 1 solution to intelligently reduce the number
of distributions to be searched: (i) The medial axis is
divided into K pieces, branches with monotonically in-
creasing radius functions and the junctions connecting
them. (ii) It is assumed that there is at most one local
maximum per way W of partitioning the N disks over the
K pieces (branches and junctions),W ¼ fnigK1 , where N ¼P

K
i ni and ni is the number of disks on the ith piece,

ni 2 N. (iii) It is further assumed that, given the optimal
way of partitioning N � 1 disks, fn0igK1 , the optimal way

of partitioning N disks is nearby, where nearby meansP
K
1 j ni � n0i j is small, and that if the disks assigned to a

given piece are decreased in number, the pieces that have
disks increased in number have a minimal distance
(counted by number of connecting pieces) to the decreased
piece. (iv) The local maxima of the nearby ways are
generated by using any local maximum finding technique
(e.g., active set or sequential quadratic programming opti-
mization schemes [28]). The best local maximum found is
presumed to be the optimal N filling solution for the shape.
Note that, during the local maximum search, the searched
space is first-order continuous because the fixed points of
first-order discontinuities are in the set of junctions.
Nonfixed points of first-order discontinuity that correspond
to the point of tangency of disks in G are not generally
relevant, because they cannot be points of local maximum.
By recursively constructing theN disk filling solution from
the N � 1 disk filling solution, the number of local maxi-
mum searches is reduced from a polynomial number with
the degree dependent on the complexity of the shape to a
linear number with the coefficient dependent on the com-
plexity of the shape (Supplemental Material [22], Sec. 2).

This heuristic is made more efficient by taking advan-
tage of center-occupied traps and the dependence of the
filling function on the nearest neighbors. When a trap is
occupied by a center in theN � 1 solution, the phase space

of centers can be divided into independent subspaces. If it
is known (or guessed) that the best solution for N also
includes a center in the trap, then the subparts of MðGÞ
connected only by the center-occupied trap can be
searched independently. Rearrangements of centers in
one subpart cannot affect the best arrangement of centers
in another if they are connected only by the center-
occupied trap.
We implemented this heuristic for polygons, which have

only a few types of medial axis branches. The sets of disks
shown in Figs. 2 and 3 are the best solutions found by
the heuristic and verified by a genetic algorithm [29]. The
heuristic generally produces a superior solution to the
genetic algorithm, as long as a large enough neighborhood
of ways is considered. One surprising finding is that the
largest disk that fits in G, i.e., the N ¼ 1 solution, is not
always part of the solution for N > 1. In Fig. 3, for ex-
ample, the N ¼ 5 solution for the trapezoid does not
include the N ¼ 1 solution.
Optimally filling a polygon as N ! 1.—It is instructive

to examine how the optimal filling of a shape converges to
the total volume of the shape as N ! 1. We find that this
limit can be solved exactly for polygons. The MðGÞ of a
polygon can be divided into branches of only three types:
(i) straight segments with linear radius functions,
(ii) parabolic curves with quadratic radius functions, and
(iii) straight segments with square root radius functions
(Supplemental Material [22], Sec. 3). Immediately, case
(iii) can be ignored, because no disk center on such a curve
fills more area than that filled by two disks placed at the
ends of the curve. In ideal solutions, case (iii) type curves
are empty except for the ends of the curve. Thus we need
only derive an expression for the relative density of centers
as a function of position on the other two branch types.
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FIG. 3 (color online). Maximal filling solutions for polygons.
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Along each branch type, the distribution of optimal filling
solutions approaches this expression as N ! 1.

Let �ðtÞ represent the density of centers, rðtÞ the radius
function, �ðtÞ the local curvature, and ðxðtÞ; yðtÞÞ the posi-
tion along a parameterized branch of MðGÞ, with t 2
½ta; tb�. Given an expression for the unfilled area Ai along
the path i of the form

Ai ¼
Z tb

ta

Cið�; r0; rÞ dt
�2

; (1)

where Ci is a function to be determined, we wish to
determine the function �ðtÞ that minimizes this area con-

strained by N ¼ Rtb
ta �dt. Note that if we sum the unfilled

areas Ai over all ofMðGÞ, then the filled area is AG �P
Ai,

where AG is the area of G. This variational problem can be
solved by constructing the Lagrangian

L ½�ðtÞ;�� ¼
Z tb

ta

�
CiðtÞ 1

�2
� ��

�
dt (2)

and taking the pointwise derivative with respect to �ðtÞ,
@L
@�ð�Þ ¼

Z tb

ta

��2CiðtÞ
�3

þ @

�2@�
CiðtÞ ��

�
�ðt� �Þdt¼ 0:

(3)

This equation is solved by functions � that satisfy

� 2CiðtÞ þ �
@

@�
CiðtÞ � �3� ¼ 0: (4)

Note that � ¼ ðCiðtÞ
� Þ1=3 satisfies this equation.

For case (i), where ðxðtÞ; yðtÞÞ ¼ AtþB, and rðtÞ ¼
ctþ r0, for constants c; r0 � 0, where ta � 0, we derive
(Supplemental Material [22], Sec. 4)

C ¼ 1

12r
ð1� r02Þ3=2: (5)

It follows that � / r�1=3.
For case (ii), where ðxðtÞ; yðtÞÞ ¼ ð2r0t; r0t2Þ, r ¼

r0ð1þ t2Þ, where r0 is the minimum of the radius function,

and �ðtÞ ¼ 1
2r0

ð1þ t2Þ�3=2, we derive (Supplemental

Material [22], Sec. 5)

C ¼ 1

12

�
r0�

r

�
¼ 1

24r0
ð1þ t2Þ�5=2: (6)

It follows that � / ð1þ t2Þ�5=6 / r�5=6.
For both case (i) and case (ii), the distribution of centers

follows a power law with respect to the local radius func-
tion. We observe that centers on MðGÞ will be distributed
more densely where the radius function is smaller. Given
� ¼ �0r

��, for � ¼ 1=3 or 5=6, �0 can be determined
from

�0 ¼ N

�Z ta

tb

r��dt

��1 ¼ N=R0: (7)

R0 is then a constant determined by the radius function of
the branch.
For case (i), we observe that the distribution of centers

on the medial axis branch is also scale-free. The distribu-
tion of centers follows a power law with respect to the
distance from the vertex (where t ¼ 0) of the polygon.
Equation (1) is thus

A ¼ 1

N2

Z tb

ta

R2
0Cð�; r0; rÞdt ¼

1

N2
C; (8)

where C is the evaluated integral. Thus, as N ! 1 for a
system of ideally distributed centers, the filling converges
to the area of G with an asymptotic error proportional to
N�2. It can be presumed that all shapes that can be ap-
proximated by polygons with an increasing number of
sides also converge with an N�2 error term.
If we divide MðGÞ into k branches, we can predict the

partitioning of the disks over the branches as N ! 1. The
fraction of disks on a given branch i is (see Supplemental
Material [22], Sec. 6)

fi ¼ ðCiÞ1=3
ðC1Þ1=3 þ ðC2Þ1=3 þ � � � þ ðCkÞ1=3

: (9)

For a triangle, which is composed of three case (i)
branches, the fraction of the disks on a given branch can
be solved analytically:

fi ¼ cotð�iÞ
cotð�1Þ þ cotð�2Þ þ cotð�3Þ ; (10)

where �1, �2, and �3 are the internal angles of the triangle,
each of which is associated with a branch of the medial
axis. From Eq. (10), it is clear that the optimal solution
preferentially populates medial axis branches associated
with smaller internal angles. This can be observed in the
triangles in column one of Fig. 3.
Discussion.—A convenient framework for visualizing

filling solutions of a 2D shape is to consider the unfilled
area as the ‘‘energy’’ of the system and the force acting on
a disk center as the negative gradient of this energy. The
force acting on a single center can be divided into two
parts: a force due only to the local radius function and a
purely repulsive short range force (also dependent on the
radius function) between a center and its neighbors
(Supplemental Material [22], Sec. 1C). The range is de-
fined by where two disks overlap. Because this energy
function is not first-order continuous, these force defini-
tions have discontinuities. A center in a trap, therefore, has
a restoring force in each path direction away from the trap.
A center not in a trap is at a point where the local forces
balance. The filled area plots of Fig. 2, therefore, are like an
inverted energy landscape of the N ¼ 1 system of the two
polygons.
In this work, we defined the filling problem for arbitrary

dimensions. Although we examined the details of its solu-
tion structure only in two spatial dimensions, we can
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extrapolate some of our findings to higher dimensions. For
instance, in the case of polygons, we found that first-order
continuous manifolds meet at lower dimension manifolds
where centers are trapped. It is natural to expect similar
behavior for D> 2. Further, higher-dimensional polyhe-
dron shapes are also likely to have manifolds with scale-
free solutions. However, in higher dimensions, the topol-
ogy of the medial axis is also more complex. Many of the
simplifying assumptions that result from the restriction of
the n-ball centers to a planar graph do not hold in higher
dimensions. Higher-dimensional filling solutions will be
investigated in future publications.
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Lett. 106, 148302 (2011).

[2] H. Jacquin, L. Berthier, and F. Zamponi, Phys. Rev. Lett.
106, 135702 (2011).

[3] C. Zhao, K. Tian, and N. Xu, Phys. Rev. Lett. 106, 125503
(2011).

[4] A. Mughal, H. K. Chan, and D. Weaire, Phys. Rev. Lett.
106, 115704 (2011).

[5] R. S. Hoy and C. S. O’Hern, Phys. Rev. Lett. 105, 068001
(2010).

[6] A. Jaoshvili, A. Esakia, M. Porrati, and P.M. Chaikin,
Phys. Rev. Lett. 104, 185501 (2010).

[7] R. D. Kamien and A. J. Liu, Phys. Rev. Lett. 99, 155501
(2007).

[8] A. Donev, F. H. Stillinger, and S. Torquato, Phys. Rev.
Lett. 96, 225502 (2006).

[9] C. Radin and L. Sadun, Phys. Rev. Lett. 94, 015502
(2005).

[10] R.M. Baram, H. J. Herrmann, and N. Rivier, Phys. Rev.
Lett. 92, 044301 (2004).

[11] T. Aste, Phys. Rev. E 53, 2571 (1996).
[12] S. Torquato, Phys. Rev. E 82, 056109 (2010).
[13] C. Messenger, R. Prix, and M.A. Papa, Phys. Rev. D 79,

104017 (2009).
[14] C. Anteneodo and W.A.M. Morgado, Phys. Rev. Lett. 99,

180602 (2007).
[15] K. R. Coutinho, M.D. Coutinho-Filho, M.A. F. Gomes,

and A.M. Nemirovsky, Phys. Rev. Lett. 72, 3745 (1994).
[16] A. Verberkmoes and B. Nienhuis, Phys. Rev. Lett. 83,

3986 (1999).
[17] M.A. Horsch, Z. Zhang, and S. C. Glotzer, Phys. Rev.

Lett. 95, 056105 (2005); T. Chen, Z. Zhang, and S. C.
Glotzer, Proc. Natl. Acad. Sci. U.S.A. 104, 717 (2007).

[18] J. D. Bourland and Q. R. Wu, in Proceedings of the Fourth
International Conference on Visualization in Biomedical
Computing (Springer-Verlag, London, 1996), pp. 553–
558.

[19] S. Bischoff and L. Kobbelt, in Proceedings of the First
International Symposium on 3D Data Processing
Visualization and Transmission, 2002 (IEEE, Los
Alamitos, CA, 2002), pp. 480–488.

[20] D. J. Kraft, W. S. Vlug, C.M. van Kats, A. van Blaaderen,
A. Imhof, and W.K. Kegel, J. Am. Chem. Soc. 131, 1182
(2009).

[21] D. J. Kraft, J. Groenewold, and W.K. Kegel, Soft Matter 5,
3823 (2009).

[22] See Supplemental Material at http://link.aps.org/
supplemental/10.1103/PhysRevLett.108.198304 for extra
mathematical terminology, calculations, details, and
proofs to support statements made in this Letter.

[23] H. Blum, in Models for the Perception of Speech and
Visual Form (MIT, Cambridge, MA, 1967), p. 362.

[24] H. Blum and R.N. Nagel, Pattern Recognition 10, 167
(1978).

[25] In this Letter, we mean simple polygons, i.e., convex or
concave, but not self-intersecting.

[26] J. Vilaplana, Computing the Medial Axis Transform of
Polygonal Objects by Testing Discs (Universitat
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